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1. MOTIVATION1. MOTIVATION

Geothermal energy production from deep hot rocks requires a high permeability heat

exchanger in order to achieve a cost-competitive power generation. Hydraulicexchanger in order to achieve a cost-competitive power generation. Hydraulic

stimulation of geothermal reservoir is widely used to enhance the permeability of

naturally fractured rocks. This procedure usually triggers microseismic events, which

may sometimes compromise the continuation of the project (Majer et al., 2007;may sometimes compromise the continuation of the project (Majer et al., 2007;

Cornet et al., 1997).

This induced seismicity is mostly governed by hydro-mechanical processes; however,This induced seismicity is mostly governed by hydro-mechanical processes; however,

thermal effects may also play a key role in the mechanical behavior (De Simone et al.,

2013). Understanding this mechanisms and how they are affected by the in situ

conditions is important to properly design and manage geothermal stimulation andconditions is important to properly design and manage geothermal stimulation and

operations.

3. METHODS3. METHODS3. METHODS3. METHODS

� Several schemes of a vertical fault zone structure

embedded in a crystalline matrix;

� Numerical simulation of isothermal (HM) and non-

isothermal (THM) water injection;
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� 7 days Injection and 7 days shut in;

� Fully coupled simulation with FEM code Code_Bright

Z
=

40
00

 m

σ1� Fully coupled simulation with FEM code Code_Bright

(Olivella et al., 1996);

� Analysis of the variation of pressure, temperature and

σ1

� Analysis of the variation of pressure, temperature and

stress regime due to the hydraulic and thermal

perturbations;perturbations;

�Analysis of the seismicity tendency in terms of Coulomb

Failure Stress variation (∆CFS), calculated on the favorablyFailure Stress variation (∆CFS), calculated on the favorably

oriented plane.

�
′  

Positive values of CFS mean failure; 

increase of CFS (∆CFS>0) means 

evolution towards failure condition. 

�
′  

evolution towards failure condition. 

4. RESULTS4. RESULTS
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5. CONCLUSIONS5. CONCLUSIONS

� Global response is governed by the damage zone behavior, so the inclusion of the

fault core appears to be redundant (curves A-C and B-D are almost the same both infault core appears to be redundant (curves A-C and B-D are almost the same both in

HM and THM simulations);

� Stiffness considerably affects the stress state, mostly in the case of non isothermal

injection (THM), thus models B and D show greater thermal perturbations;injection (THM), thus models B and D show greater thermal perturbations;

� During the injection ∆CFS increases inside the fault zone, while post-injection

instability is observed in the zone of the matrix near the fault zone.instability is observed in the zone of the matrix near the fault zone.
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2. OBJECTIVE2. OBJECTIVE

An essential topic in geothermal

reservoir stimulation design is the

characterization of geometry and

makes it to act as a flow path.

To investigate the potential effects of

reservoir heterogeneities, we studiedcharacterization of geometry and

properties of the geological system.

Fault zones involved in the stimulation

reservoir heterogeneities, we studied

how the fault zone structure can affect

the hydro-mechanical and thermo-Fault zones involved in the stimulation

processes are generally composed by a

fault core, consisting of low-permeability

gouge, surrounded by a damage zone,

the hydro-mechanical and thermo-

hydro- mechanical behavior. To fulfill this

aim, a simple model of hydraulic

stimulation was developed, comparinggouge, surrounded by a damage zone,

which is a wider microfractured region

altered by large deformations (Faulkner

stimulation was developed, comparing

different fault zone properties and

schemes.altered by large deformations (Faulkner

et al., 2010; Wibberley et al., 2008). The

higher permeability of the damage zone

schemes.
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Model A Model B Model C Model D
k damage zone 10-12 10-12 10-12 10-12 m2

E damage zone 1000 5000 1000 5000 MPa
k fault core - - 10-18 10-18 m2

E fault core - - 1000 1000 MPaE fault core - - 1000 1000 MPa
k matrix 10-18 m2

E matrix 50000 MPaE matrix 50000 MPa
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